

Effects of Impurities on Fuel Cell Performance and Durability

J.G. Goodwin, Jr., Jack Zhang, K. Hongsirikarn, and Zhiming Liu *Clemson University*

William Rhodes, Hector Colon-Mercado, and Scott Greenway

Savannah River National Lab

Peter Finamoore

John Deere, Advanced Energy Systems Division

Project ID#: FC29

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

■ Timeline

Start: Feb. 15, 2007Finish: Feb. 14, 2011

■ Completed: 25%

Budget

■ Total Project Funding

DOE Share:

CU: \$1,205,425

SRNL: \$774,979

Cost Share:

• CU: \$295,101

John Deere: \$193,745

Funding received in FY07

• CU: \$222,982

SRNL: \$125,000

Funding for FY08

• CU: \$295,721

SRNL: \$200,000

Barriers

■ Fuel cells stacks do not maintain performance over the full useful lifetime of a vehicle.

Targets

- Test, analyze and characterize MEAs before, during and after operation
- Develop electrocatalysts with reduced precious metal loading, increased activity, improved durability / stability and increased tolerance to air, fuel and system-derived impuritie
- Develop sustainable MEA designs that meet all targets

Partners

- Clemson University
- SRNL
- John Deere

Objectives

- Investigate in detail the effects of impurities in the hydrogen fuel and oxygen streams on the operation and durability of fuel cells.
 - CO, CO₂, NH₃, H₂O, HCs (incl. C₂H₄, C₂H₆, H₂CO, HCOOH), O₂, inert gases (He, N₂, Ar), Cl₂, and H₂S.
- Determine mechanisms of impurity effects.
- Suggest ways to overcome impurity effects.

<u>Objectives – Year 1</u>

- Obtain and characterize components of MEA to be used (20% Pt/C, 30% Nafion/C, Nfn-Pt/C, Nafion membrane).
- Design and set up measurements of impact of impurities on MEA components.
- Install Fuel Cell Test Station.
- Calibrate FC Test Station measurements in "round robin" test of standard MEA with other DOE contractors.
- Start characterization of effects of CO and NH₃.

Revised Milestones

Qtr	FY	Materials Acquisition /Prep./Modeling	Pt Study (Pt/C, Nafion/Pt/C)	Nafion Study (Nafion/C,	PEMFC Performance Testing
				Nafion/Pt/C and Nafion membrane)	
1	2007	Materials purchase (Pt/C, PtRu/C, Nafion, gas mixtures)	training of student	training of student	Purchase of PEMFC
2	2007		Characterization of Pt/C	Characterization of Nafion/C	Installation of gas mix. sys.
3	2007		Constr. of H ₂ -D ₂ and H ₂ -O ₂ reaction system, start study of CO	Modif. of Nafion acidity test system. start study of NH ₃	Design of test protocols
4	2008	Prep. of Nafion membranes for conductivity meas.	Integration of mass spec to reaction/ads. system, cont. CO study	Purchase of imped. meas. system, cont. study of NH ₃	Finalizing test protocols, installation of FC Test Station, MEA preparation
5	2008	Prep. of Nafion membranes	Effect of CO,	Effect of NH ₃	Round robin test of benchmark MEA, Effect of CO
6	2008		Effect of CO, Effect of NH3	Effect of NH ₃ Effect of CO	Effect of NH ₃
7	2008		Effect of CO ₂	Effect of CO ₂	Effect of CO ₂
8	2009	Development of poisoning model	Effect of Ethylene Effect of Ethane	Effect of Ethylene Effect of Ethane	Effect of Ethylene Effect of Ethane
9	2009	Go-No Go Decision	Go-No Go Decision	Go-No Go Decision	Go-No Go Decision

Approach

Fundamental Studies Investigate impact of impurities on Pt/C , Nafion/C, and Nafion

Investigate poisoning effects of Impurities on fuel cell performance

Delineation of mechanisms for poisoning by gas impurities

Development of strategies to reduce the detrimental effect of impurities

Experimental

Clemson

- Phys. & Chem. Characterization
 - BET (Pt/C, Nafion, Naf-Pt/C)
 - XRD (Pt/C, Nafion, Naf-Pt/C)
 - SEM/TEM (Pt/C, Nafion, Naf-Pt/C)
 - EDS (Pt/C, Nafion, Naf-Pt/C)
 - ☐ FT-IR (Pt/C, Nafion, Naf-Pt/C)
 - □ H₂ Chemisorption (Pt/C, Naf-Pt/C)
 - Acid site titration (Nafion, Naf-Pt/C)
 - NH₃ ads. to meas. BA sites (Nafion, Naf-Pt/C)
- Reaction Characterization
 - \Box H_2 - D_2 (Pt/C, Naf-Pt/C)
 - \Box H_2 - O_2 (Pt/C, Naf-Pt/C)
 - Model BA-catalyzed reaction (Nafion, Naf-Pt/C)
- Conductivity Measurement
 - Impedance analysis (Nafion, Naf-Pt/C)

SRNL

Gas Impurity Mixture Generator

Kin-Tek mixture generator
Up to 48 mixed impurities
Up to 500 sccm

FC Single Cell Test Station

Arbin FCTS 200H

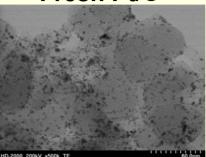
Max. Power: 200 W Max. Temp.: 130°C

Temperatures	80° C	
Pressure	2 bara (P _a =P _c)	
Humidity	100 % RH anode, 50 % RH cathode	
Stoichiometry (A/C)	H ₂ /Air = 1.1/2.5 @ 1000 mA/cm ²	
Loading	Anode 0.1 mg Pt/cm ² (20 wt% Pt-C)	
	Cathode 0.3 mg Pt/cm² (40 wt% Pt-C)	
Electrolyte	Nafion® 212	
Cell Area	50 cm ²	
Current density	1000 mA/cm ²	

Experimental: *Materials**

Anode: 20 wt% Pt/C (E-TEK)

Pt Particle Size: 22 Å (Co.)


BET Surface Area: 112 m²/g (Co.)

Cathode: 40 wt% Pt/C (E-TEK)

*Pt Particle Size: 29 Å (Co.)

*BET Surface Area: 100 m²/g (Co.)

Fresh Pt/C

Element	Wt. %	Atom. %		
СК	84.8	96.8		
ОК	2.5	2.1		
S K	0.4	0.2		
Pt M	12.4	0.8		
Total	100	100		

5 wt% Nafion EW 1100 Solution (Ion-Power)

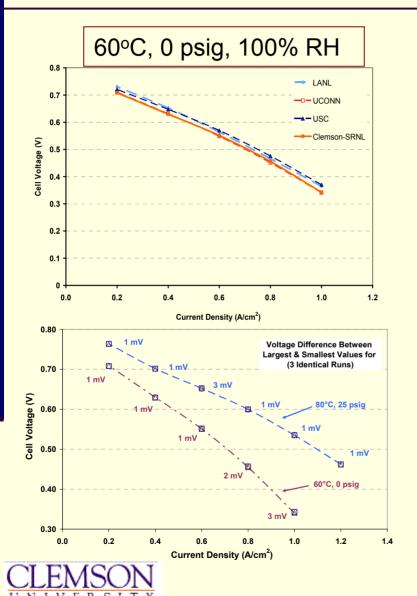
$$\begin{array}{c|c}
\hline
\begin{pmatrix}
F_2 & F_2 \\
C & C
\end{pmatrix}_n & C & CF_2 \\
\hline
\begin{pmatrix}
F_2 & F_2 \\
C & C
\end{pmatrix}_m & C & SO_3H$$

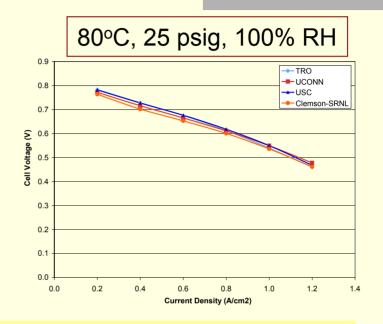
- Carbon Black Powder (XC-72R)
 - BET Surface Area: 250 m²/g (Co.)
- MEAs (E-TEK)
- Nafion ® 212 Membrane EW 1100 (Du Pont)

BET Surface Area:

C Support: 226 m²/g
 20 wt% Pt/C: 112 m²/g
 30 wt% Nafion/C: 59 m²/g
 30 wt% Nfn-Pt/C: 62 m²/g

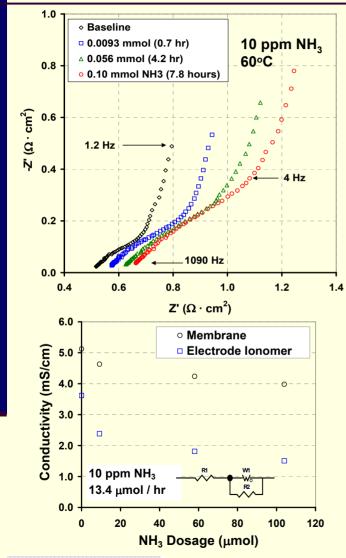
Acid Site Density:


30 wt% Nafion/C: 270 μmol/g 30% Nfn-Pt/C: 227 μmol/g



* Commercial Products

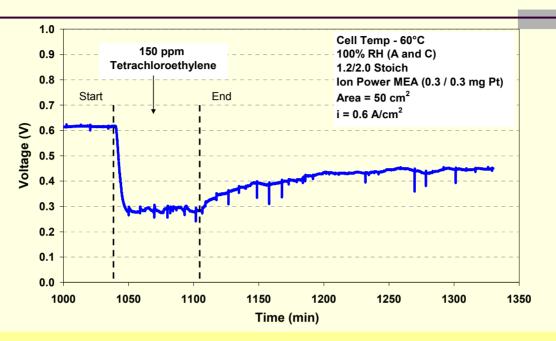
USFCC Round Robin: SRNL FC Results



- ☐ Excellent reproducibility was found between labs and FC test stations.
- ☐ Reproducibility of the SRNL FC test station was excellent.

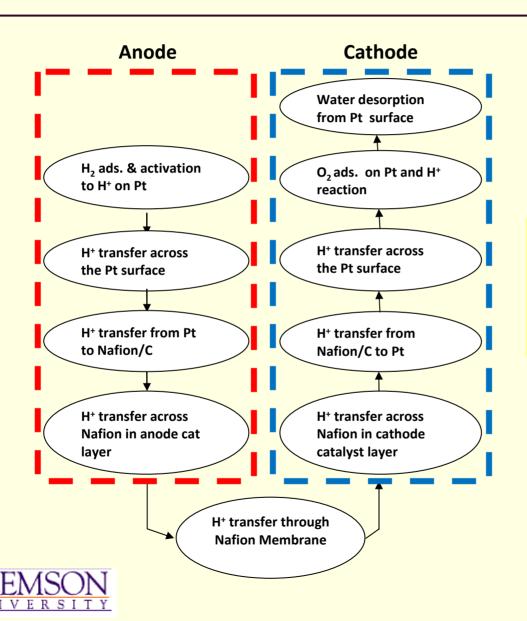
Electrochemical Impedance Spectroscopy (EIS):

10 ppm NH₃ Effect on Membrane & Ionomer @ 60°C


- ☐ The <u>baseline</u> run before poisoning is shown in black.
- Area corrected <u>membrane resistance</u> is given by the high frequency intercept with the x-axis.
- The <u>ionomer resistance</u> is proportional to the length of the "45°" line segment between 1090 Hz and ca. 4 Hz.
- This analysis method shows that <u>both</u> the membrane and electrode ionomer <u>resistances increase</u> during NH₃ poisoning.

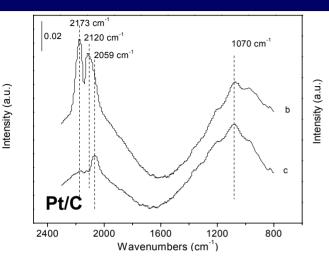
lon Power MEA (0.3/0.3 mg Pt) Working Electrode – 10 ppm $\rm NH_3$ in Ar at 500 sccm (13.4 μ mol / hr); 75% RH Ref. / Counter Electrode - $\rm H_2$ at 500 sccm ; 75% RH Potential Bias (11 mV vs. OCV) Perturbation (10 mV) Inductance Correction (0.36 mH)

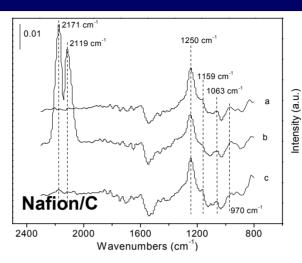
PEMFC: Effect of Tetrachloroethylene @ 150 ppm

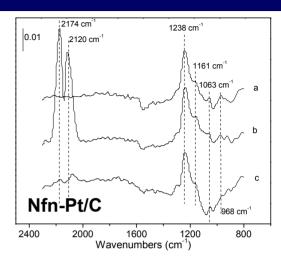


- ☐ The impurities generator at SRNL can simulate many different individual contaminants or contaminant mixtures.
- ☐ As a preliminary checkout of the system, poisoning of a 50 cm² cell with 150 ppm of tetrachloroethylene (dry), a representative chlorinated hydrocarbon typical of many degreasing agents, was carried out.
- □ Loss of more that <u>50% of the cell potential</u> resulted within a few minutes to give a new pseudo-steady-state operating potential. The cell was able to recover 50% of its loss when the impurity was stopped.

Rate Steps during FC Operation




Use to model effect of poisons on fuel cell operation based on direct measurements.

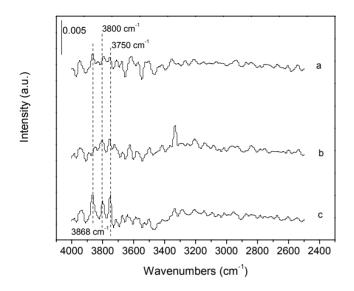


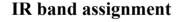
DRIFTS spectra of CO on Nafion/C, Nfn-Pt/C, and 20% Pt/C:

a: fresh sample*; b: in flowing 4% CO in H₂; c: followed by H₂ purge at 80°C

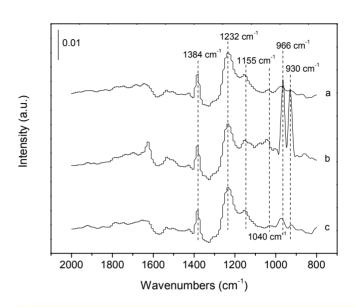
- ☐ CO adsorbs on Pt/C as linear CO.
- ☐ CO does not adsorb on Nafion/C, which may explain the slight effect of CO on the activity of Nafion/C for esterification.

IR band assignment

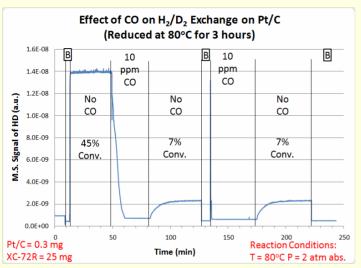

Wavenumber/cm ⁻¹	Surface species
2171, 2119	gas phase CO
2059	linear CO
1250	CF ₂ asymmetric stretching
1159	CF ₂ symmetric stretching
1070	COH_x
1063	S-O symmetric stretching
970	C-O


- ☐ The shift in wavenumber of CF₂ to lower frequency for Nfn-Pt/C indicates there is interaction between Pt and Nafion.
- ☐ CO adsorbs less and more weakly on Nfn-Pt/C, perhaps due to this interaction.
- \square COH_x species appear to be formed on Pt/C in the presence of CO and H₂.
- ☐ CO and COH_x species block Pt sites required for H₂ adsorption, resulting in lower performance of the PEMFC.

^{*} The fresh samples were treated in $\rm H_2$ at 80 $^{\circ}{\rm C}$ for 3 hours prior to IR.


DRIFTS spectra of NH₃ on Nafion/C:

a: fresh Nafion/C; b: flowing 750 NH₃ in H₂; c: after He purge at 80°C.

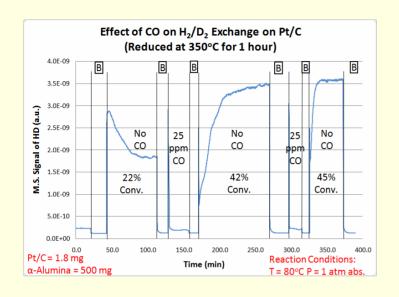

Wavenumber/cm ⁻¹	Surface species
3868, 3800, 3750	$\mathrm{NH_4}^+$
1384	CF ₂ asymmetric stretching
1232	CF ₂ asymmetric stretching
1155	CF ₂ symmetric stretching
1040	S-O symmetric stretching
966, 930	gas phase NH3

- □ Peaks assigned to NH₄⁺ can be observed, indicating that NH₃ absorbed on the Bronsted acid sites of Nafion forming NH₄⁺.
- ☐ The formation of NH₄⁺ reduces the proton conductivities of the Nafion membrane and the anode catalyst ionomer layer.

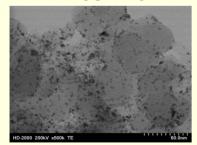
Effect of 10 ppm of CO on H₂ Activation

Pt/C

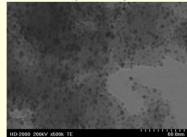
Nfn-Pt/C



- \square Pt/C is very active for H₂ dissoc. (equilibrium reached with only 0.3 mg of catalyst).
- ☐ Pt/C is effectively poisoned in 10 min, suggesting that practically every CO adsorbs.
- \square Nafion-Pt interactions cause H_2 dissociation to be somewhat inhibited on Nfn-Pt/C.
- □ Nafion-Pt interactions may be due to interactions with sulfonic acid groups/CF₂.
- \square Presence of CO, even at 10 ppm, stops H_2 activation.
- □ Poisoning effect is partially reversible at 80°C within 20 min, but most CO strongly bound.



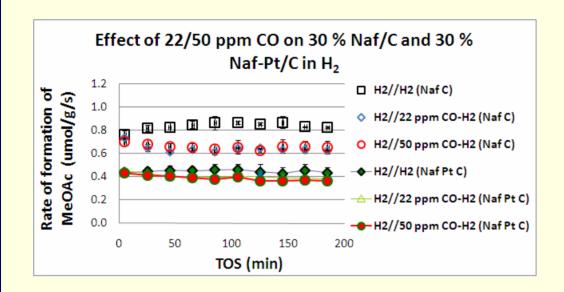
Effect of 25 ppm of CO on H₂ Activation



Fresh Pt/C

 $d_{Pt} = 2.9 \text{ nm}$

Red. (350°) Pt/C

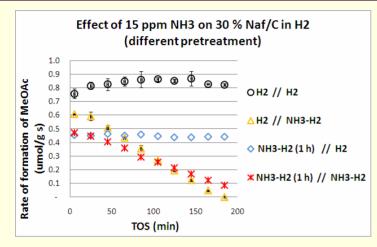

 $d_{Pt} = 4.8 \text{ nm}$

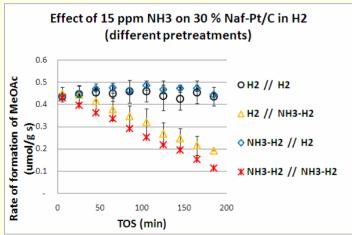
- ☐ If Pt/C is <u>reduced at 350°C</u>, the Pt particles sinter and the activity is less since the amount of exposed Pt surface atoms is less.
- The Pt particle diameters increase from 2.9 to ca. 4.8 nm.
- 25 ppm CO also results in total loss of activity.
- However, for these larger particles of Pt,
 - □ there is a total recovery of activity within 10-25 min. (no irrev. ads. CO).
 - □ increased H₂ activation is possibly due to Pt surface restructuring.

Effect of CO on Nafion/C and Nfn-Pt/C

Surface sites of Pt/C*

- 20% Pt/C = 677 μ mol H/g *Calc. from H₂ chemisorption
- **Proton site density***
- 30% Nafion/C = 270 μ mol/g
- 30% Nfn-Pt/C = 227 μ mol/g
- *Based on S analysis

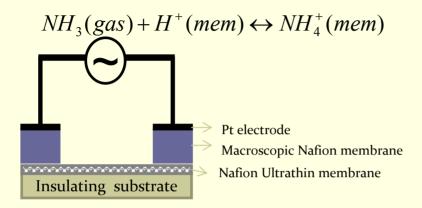

Esterification of HAc: Pres. = 1 atm (abs.), $T = 80^{\circ}$ C, P_{MeOH} and $P_{HAc} = 0.01$ atm, Tot. flow rate = 100 sccm


- □ The activity of 30% Nafion/C is greater than that of 30% Nfn-Pt/C. Pt appears to catalyze removal of some of the S when Nafion added to Pt/C [S content decrease while F content remains constant.
- The interaction of Pt with sulfonic acid groups/CF₂ may decrease the strength/number of acid sites in Nafion.
- □ CO has a small effect on the acidity.
- **■** Even 22 ppm of CO causes the maximum effect.

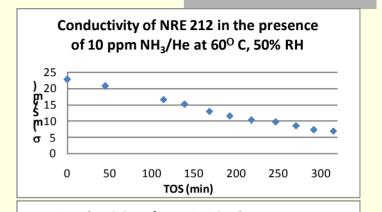
Effect of NH₃ on Nafion/C and Nfn-Pt/C

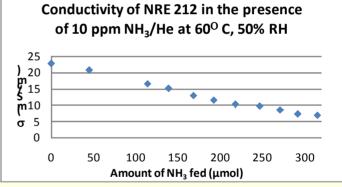
Esterification of HAc: Pres. = 1 atm (abs.), T = 80 C, P_{MeOH} and $P_{\text{HAc}} = 0.01$ atm, Tot. flow rate = 100 sccm

- The poisoning effect of NH₃ is cumulative and even at 15 ppm appears to be irreversible.
- The effect of NH₃ on the Brønsted acid sites on Nafion/C is more than that on Nfn-Pt/C.
- Pt may decompose NH₃ resulting in less poisoning of Nafion in Nfn-Pt/C.
- From NH₃ pulse chemisorption, it was found that NH₃ can adsorb on Pt/C leading to competitive adsorption of NH₃ on Pt/C and the sulfonic acid ions of Nafion.


Proton site density*

- 30 % Naf/C = 270 μ mol/g
- 30 % Naf-Pt/C = 227 μ mol/g




Impedance Measurement: 10 ppm NH₃ on Nafion 212

Conditions: $T = 60^{\circ}C$, RH = 50%, 125 ppm NH_3 in He

- Electrochemical cell designed to test ionic conductivity in the membrane
- Electrochemical Impedance Spectroscopy (EIS) is being used to test Nafion membrane and Nafion/C properties with poisoning

- \Box σ (H⁺ form) = 22.7 mS/cm
- \Box σ (H⁺ form from Springer model) = 22.3 mS/cm*
- $\square \sigma (NH_4^+ form) = 7 \text{ mS/cm}$
- \Box σ of H⁺ form Nafion® is ca. 3 times higher than NH₄⁺ form which is in agreement with the value that Uribe et. al reported (3.8–4.2 times).**

Fundamental Modeling Collaboration:

Clemson /SRNL/GreenWay Energy

Review Contaminant Model Literature

- Survey PEM literature to understand contaminant models.
- Identify most relevant poisoning mechanism for CO and NH₃.

Develop First Principles Kinetic & Rate Expressions

- Create model as a tool for understanding ex-situ data.
- Relate *ex-situ* and *in-situ* results.

Predict Results for Fuel Cell Testing

Use comprehensive contaminant model to predict cell test results.

Program Model Code

■ Give researchers direct access to model predictions in an easy to use format such as Maple or Matlab.

Future Work (FY08-FY09)

Activities

- Complete studies of the effects of CO, NH₃, CO₂, ethane, and ethylene on fundamental processes and fuel cell performance.
- Develop model for incorporating fundamental results to predict FC behavior.
- Determine how well the measurement of effects on FC components predict FC performance.

Upcoming Milestones

- Complete fundamental studies of effects of CO, NH₃, CO₂, ethane and ethylene on Pt/C, Nafion/C, and Nafion membrane.
- Complete FC runs of effects of CO, NH₃, CO₂, ethane and ethylene on FC performance.

Decision Points

■ Go-No Go decision at end of 2nd quarter FY 2009

Summary

- Project started in Feb. 2007.
- MEA components acquired and characterized March-Oct. 2007.
- FC test station installed & operational in Nov. 2007
- Fundamental studies of CO indicated how Pt surface covered with CO prevents completely H₂ activation even at 10 ppm.
- Larger Pt particles appear to adsorb CO more reversibly with some surface restructuring likely.
- Pt interacts with Nafion in Nfn-Pt/C and appears to cause some decrease in S content.
- NH₃ at 10 ppm accumulates on the proton sites of the Nafion membrane decreasing proton conductivity >3X.
- Pt helps to protect Nafion from NH₃, but decomposed products may interact with organics to deactivate proton sites.
- Round Robin FC MEA test completed Jan. 2008 with excellent match.
- **■** FC tests carried out for NH₃ and tetrachloroethylene.
- FC used to perform Electrochemical Impedance Spectroscopy to analyze conductivities, membrane performance and catalyst performance.

